Взаимодействие ионов с поверхностью

Внедрение, отражение, десорбция, распыление и ВИИЭ

Энергоспектр вторичных атомов (и ионов)

Торможение ионов в веществе

$$\frac{\mathrm{dE}}{\mathrm{dz}} = \left(\frac{\partial \mathrm{E}}{\partial \mathrm{z}}\right)_{\mathrm{n}} + \left(\frac{\partial \mathrm{E}}{\partial \mathrm{z}}\right)_{\mathrm{e}} + \left(\frac{\partial \mathrm{E}}{\partial \mathrm{z}}\right)_{\mathrm{ch}}$$

Frektronne

O Smen zaps

HEARING LONG, K)B

Значения E_1, E_2, E_3 при имплантации в кремний

Ядерные потери:

9 JEDHDE

IZ

- упругие столкновения
- взаимодействие между экранированными зарядами иона и атома мишени
- выбивание атомов мишени

Электронные потери (неупругие):

- торможение с передачей энергий электронам - возбуждение и ионизация атомов

Обмен зарядами: $V_i \sim V_e = 2\pi z^{2/3} e^2/h$ (<10%)

Пробег протонов в резисте

Потери энергии при торможении протонов энергией 60 кэВ в резисте ПММА

Электронные потери

Линдхард-Шарф-Шиотт, 1963

$$\mathbf{S}_{\mathbf{e}} = \mathbf{C} \cdot \mathbf{z}_1 \cdot \mathbf{z}_2 \cdot \mathbf{a}_{\mathrm{TF}} \cdot \mathbf{V}$$

О.Б.Фирсов (квазимолекула, $S_e[_{3B \cdot cM^2/amom}] = 2.3 \cdot 10^{-23} (z_1 + z_2) \cdot V_{cM/c}$ обмен электронами)

Бёте (частицы ионизованы) $V > 2\pi \cdot z^{2/3} \frac{e^2}{h}$

$$S_{e} = \frac{2\pi \cdot z_{1}^{2} \cdot z_{2} \cdot e^{4}}{E} (\ln \frac{4E}{I} + ...)$$

Ядерные потери

Ядерная тормозная
$$-\left(\frac{\partial E}{\partial z}\right)_{n} = N \cdot S_{n}$$
 $S_{n} = \int_{0}^{E_{max}} E_{n} d\sigma(E_{n}, E) \left[\frac{3B \cdot cM^{2}}{amoM}\right]$
Экранированный потенциал $U = \frac{z_{1}z_{2}e^{2}}{r} \Phi\left(\frac{r}{a}\right)_{3Kpaнировка}$
 $U_{bop} = \frac{z_{1}z_{2}e^{2}}{r} \exp\left(-\frac{r}{a_{b}}\right)$
 $U_{TF} = \frac{z_{1}z_{2}e^{2}}{r} \Phi\left(\frac{r}{a_{TF}}\right)$

Потенциал Томаса-Ферми

Уравнение Пуассона решается с помощью статистической модели Томаса-Ферми

$$U = \frac{z_1 z_2 e^2}{r} \Phi\left(\frac{r}{a}\right),$$

$$\Delta U = 4\pi n = \frac{8\sqrt{2}}{3\pi} U^{\frac{3}{2}}$$

Ф определяется методом численного интегрирования

r/a	1	10
Φ	0.424	0.024

Для «экранированного» иона с зарядом Z₁ параметр экранирования ЛШШ $a_{TF} = \frac{0.885 \cdot a_0}{(z_1^{2/3} + z_2^{2/3})^{1/2}}$ Фирсов: $a_F = \frac{0.885 \cdot a_0}{(z_1^{1/2} + z_2^{1/2})^{2/3}}$

 $s_n(\varepsilon) = -\frac{d\varepsilon}{d\lambda} = \frac{d\left(\frac{E_1}{E_{TF}}\right)}{d\left(\frac{z}{L}\right)}$

- универсальная функция ядерных потерь

$$\varepsilon = \frac{E_{rel}}{z_1 z_2 e^2 / a_{TF}} = \frac{M_2}{M_1 + M_2} \cdot \frac{E_1}{z_1 z_2 e^2 / a_{TF}} = \frac{E_1}{E_{TF}} - приведенная энергия$$

Энергия
Томаса-Ферми $E_{TF} = \frac{Z_1 Z_2 e^2}{a_{TF}} \left(1 + \frac{M_1}{M_2}\right) = \frac{1}{H_2} \frac{C_1 C_4 M_0 W}{O(4355100 \text{ к})}$
 $\mathcal{R} = \frac{Z}{L} - 6$ езразмерный пробег иона, где $L = \frac{1}{N \pi a_{TF}^2} \frac{4M_1 M_2}{(M_1 + M_2)^2}$

Вид универсальной функции для различных потенциалов

Для потенциала U ~ 1/r² — $S_n = 0.327$ Приближенно (В.В.Юдин) $S_n = \frac{0.45\sqrt{\varepsilon}}{0.3 + \varepsilon}$

Пробег иона

Средний полный пробег иона

$$R = \int_{0}^{R} dz = \int_{E_{0}}^{0} \frac{dE}{\left(\frac{dE}{dz}\right)_{g} + \left(\frac{dE}{dz}\right)_{g}}$$

 $R_{p} \pm \Delta R_{p}$

Проекционный пробег (на направление движения первичного иона) ΔR_p – разброс пробегов (straggling)

Распределение внедренных частиц (при отсутствии каналирования) описывается распределением Гаусса

$$\frac{dN}{dx} = \frac{\Phi}{\sqrt{2\pi} \cdot \Delta R_p} \cdot e^{-\frac{\left(x - R_p\right)^2}{2\Delta R_p^2}}$$

(Φ - доза облучения на см² поверхности, ΔRp - стандартное отклонение)

Распределение внедренных частиц $\epsilon = E_1/E_{TF}$ - приведенная энергия

x/L – безразмерный пробег

Проекции пробега

Проекции пробега и стандартное отклонение

при имплантации в кремнии

$$0,002 < \varepsilon < 0,1 \quad \bar{R}_{p} = c_{1}M_{1} \left[\frac{z_{1} + z_{2}}{z_{1}z_{2}} E \right]$$
$$0,5 < \varepsilon < 10 \quad \bar{R}_{p} = c_{2}M_{2} \left[\frac{z_{1}^{1/3} + z_{2}^{1/3}}{z_{1}z_{2}} E \right]$$

SHEPTUS, K3B

Каналирование ионов

Критические углы каналирования ионов в Si

		Угол, град.		
Ион	Е, кэВ	Направление канала		
		<110>	<111>	<100>
В	30	4.2	3.5	3.3
	50	3.7	3.2	2.9
Ρ	30	5.2	4.3	4.0
	50	4.5	3.8	3.5
As	30	5.9	5.0	3.5
	50	5.2	4.4	4.0

Схема распределения остановившихся ионов по глубине монокристалла

Радиационные дефекты

При торможении первичный ион выбивает со своих мест атомы решетки Образование вакансий, межузельных атомов и объемных дефектов Дефектов намного больше, чем имплантируемых частиц !

Число смещенных атомов решетки $N_d \approx \frac{E}{2E_d}$ $E_d \sim 5 \div 80 \text{ эB}$ Ed =22 эB для Si

Относительное распределение имплантированных ионов бора (1) и радиационных дефектов (2)

Типичный высоковольтный имплантер

Высоковольтная имплантация

- Имплантация в полупроводники
 - Глубокозалегающие изолирующие области (SiO₂ для КНИ- структур)
- Имплантация в диэлектрики
- Имплантация в металлы (дозы: 10¹⁶-10¹⁸ см⁻²)

Требования

- угол наклона на пластине < 1.0°
- энергетический разброс < 3.0 %
- однородность дозы < 1.5 %
 - (для 300 мм пластин)

<u>Преимущества:</u>

- Низкотемпературный процесс
- Контроль дозы и профиля
- Финишный процесс

Фокусированные ионные пучки

Легирование субмикронных размеров без применения литографии

Недостатки:

- Наличие дефектов в материале
- Сложность процесса
- Дороговизна

Производство имплантеров

3 типа имплантеров:

- сильноточные
- среднего тока
- высокой энергии (МэВ)

Инвестиции в производство

Основные производители

Company	Location
Axcelis Technologies	Beverly, MA
Varian Semiconductor Equipment Associates	Gloucester, MA
Applied Materials Implant Division	Horsham, U.K.
Sumitomo Easton Nova (joint venture with Axcelis)	Tokyo, Japan
Nissin Electric	Kyoto, Japan
Ibis Technology	Danvers, MA

Высокодозная имплантация в плазме (PIII)

Распределение имплантированных в Nb атомов азота

"Дальнодействие":

при дозе 10¹⁹ см⁻² и T~250°С толщина слоя (>40 %) в 3 раза больше проецированного пробега

Радиационно-индуцированная сегрегация (при высокодозной имплантации)

Распределение компонентов высоконикелевой стали по глубине

Модификация химического состава поверхностного слоя