Части статьи:  1 |  2 |  3 |  4
ПРОСТРАНСТВЕННАЯ СТРУКТУРА ОТРЫВНЫХ ТЕЧЕНИЙ НА КРЫЛЬЯХ ПРИ БОЛЬШИХ УГЛАХ АТАКИ

Более десяти лет назад было установлено [3], что при отрыве потока на прямом крыле (имеющем прямоугольную форму в плане с передней кромкой, расположенной перпендикулярно направлению потока) в области отрыва возникают грибообразные структуры, каждая из которых представляет собой пару крупномасштабных вихрей, вращающихся в плоскости крыла в противоположные стороны. Трехмерная вихревая структура течения над поверхностью крыла показана на рис. 2, где приведены фотографии визуализаций обтекания при последовательном увеличении угла атаки экспериментальной модели; воздушный поток направлен на рисунке сверху вниз. При минимальном угле атаки, равном 9,1° (рис. 2, а), около передней кромки крыла отрывается ламинарное течение и возникает узкая (локальная) область отрыва, расположенная вдоль размаха модели. Ниже по потоку течение турбулентно, его новый отрыв происходит вблизи задней кромки крыла и сопровождается образованием вихрей — на фотографии зафиксированы пять хорошо различимых вихревых пар. С увеличением угла атаки их число уменьшается в результате слияния вихрей, а характерный масштаб растет. При угле атаки 12,3° (рис. 2, б) наблюдаются три вихревые пары, при 16,8° (рис. 2, в) — две, а при 18,4° (рис. 2, г) — только одна. Дальнейшее возрастание угла атаки приводит к радикальной перестройке режима обтекания крыла: вместо отрывного пузыря у передней кромки и последующего турбулентного отрыва возникает срыв потока (рис. 2, д). В этом режиме течения формирование отрывной зоны связано с развитием в оторвавшемся слое газа собственных колебаний, вызывающих его переход из ламинарного состояния в турбулентное, о чем шла речь в первой части, и срыв потока отличается по существу происходящих при этом физических явлений от отрыва турбулентного течения. Между тем для топологии отрывного течения также характерна пара вихрей, вращающихся в плоскости крыла. По сравнению со случаем турбулентного отрыва их фокусы меняют свое положение, сдвигаясь против направления потока.
Влияние угла атаки на структуру течения в области турбулентного отрыва

Рис. 2. Влияние угла атаки на структуру течения в области турбулентного отрыва


Таким образом, реальное течение в отрывной области даже в тех геометрических условиях, которые можно считать близкими к двумерным, оказывается трехмерным и имеет сложную внутреннюю пространственную структуру. Полученные в эксперименте данные, аналогичные приведенным на рис. 2, позволяют установить ее зависимость от условий возникновения отрыва потока. Один из возможных механизмов образования трехмерных вихревых структур при двумерном отрыве потока был предложен несколько лет назад и заключается в следующем: при сходе потока с передней и задней кромок крыла образуются вихри, оси которых параллельны его размаху (рис. 3, а). Эта вихревая система неустойчива (не путать с гидродинамической неустойчивостью профиля средней скорости), вихри деформируются (рис. 3, б), происходит их перезамыкание, и в итоге появляются трехмерные структуры (рис. 3, в). Их «отпечаток» на поверхности крыла имеет грибообразную форму (рис. 3, г), наблюдаемую в эксперименте.
Схема возникновения вихревых структур в области отрыва

Рис. 3. Схема возникновения вихревых структур в области отрыва: 1 — оси вихрей, 2 — линия отрыва, 3 — линия присоединения
  << Предыдущая часть << В начало >> Следующая часть >>